IDEAL OF PRIME GAMMA RINGS WITH LEFT DERIVATIONS

C. Jaya Subba Reddy

Department of Mathematics, S. V. University, Tirupati -517502, Andhra Pradesh, India.

K. Nagesh

409

Research Scholar, Rayalaseema University, Kurnool, Andhra Pradesh, India.

A. Sivakameshwara Kumar

Research Scholar, Rayalaseema University, Kurnool, Andhra Pradesh, India.

Abstract: Let M be a prime Γ -ring, U is a ideal of M and d be a nonzero left derivation of M. If $[d(y),d(x)]_{\alpha}=[y,x]_{\alpha}$ such that for all $x,y\in U$ and $\alpha,\beta\in\Gamma$, then $[x,d(x)]_{\alpha}=0$ and hence M is a commutative.

Keywords: Derivation, Left derivation, Prime Γ-ring, Prime ring.

1. Introduction: The concept of the Γ-ring was first introduced by Nobusawa [8] and also shown that Γ-rings, more general than rings. Bresar and Vakman [2] studied on some additive mapping in rings with involution. Barnes [1]studied on the gamma rings of Nobusawa. Ceven [3] studied on Jordan left derivations on completely prime Γ-rings. Mayne [7] have developed some remarkable result on prime rings with commuting and centralizing. Luh [6] studied on the theory of simple gamma rings. Jaya Subba Reddy. C et al. [4] studied centralizing and commutating left generalized derivation on prime ring is commutative. Jaya Subba Reddy. C et al. [5] studied the right reverse derivation on prime ring is commutative. Salah Mehdi Salih et al. [9] studied on ideal of prime gamma rings with right reverse derivations. In this paper, we extended some results on ideal of prime gamma rings with left derivations.

2. Preliminaries

17

51.

at,

ed

of

ial

11.

ial

er

ol.

Let M and Γ be additive abelian groups. If there exists a mapping $(x, \alpha, y) \to x\alpha y$ of $M \times \Gamma \times M \to M$, which satisfies the conditions

(i) $x\alpha y \in M$

(ii) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)z = x\alpha z + x\beta z$, $x\alpha(y + z) = x\alpha y + x\alpha z$

(iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, then M is called a Γ -ring.

A Γ-ring M is said to be prime if $\alpha\Gamma M\Gamma b=(0)$ with $\alpha,b\in M$, implies $\alpha=0$ or b=0. If M is a Γ-ring, then $[x,y]_{\alpha}=x\alpha y-y\alpha x$ is known as the commutator of x and y with respect to α , where $x,y\in M$ and $\alpha\in\Gamma$. We make the basic commutator identities:

 $[x\alpha y,z]_{\beta}=[x,z]_{\beta}\alpha y+x\alpha[y,z]_{\beta}$ and $[x,y\alpha z]_{\beta}=[x,y]_{\beta}\alpha z+y\alpha[x,z]_{\beta}$, for all $x,y\in M$ and

 $\alpha \in \Gamma$. We consider the following assumption:

(A)...... $x\alpha y\beta z=x\beta y\alpha z$, for all $x,y,z\in M$ and $\alpha,\beta\in\Gamma$. An additive mapping $d\colon M\to M$ is called a derivation if $d(x\alpha y)=d(x)\alpha y+x\alpha d(y)$ holds for all $x,y\in M$ and $\alpha\in\Gamma$. An additive mapping $d\colon M\to M$ is called a left derivation if $d(x\alpha y)=x\alpha d(y)+y\alpha d(x)$ holds for all $x,y\in M$ and $\alpha\in\Gamma$.

3. Main Results:

Theorem 3.1: Let M be a prime Γ-ring, U is a nonzero ideal of M and d is a left derivation of M, if U is a non-commutative such that (A) for all $x, y, z \in U$ and $\alpha, \beta \in \Gamma$, then d = 0.

Proof: Since d is a left derivation and since (A) then

Let $d(y\beta x\alpha x) = y\beta x\alpha d(x) + x\alpha y\beta d(x) + x\alpha x\beta d(y)$. (1) On other hand

 $d(y\beta(x\alpha x)) = y\beta d(x\alpha x) + x\alpha x\beta d(y)$

 $= y\beta x\alpha d(x) + y\beta x\alpha d(x) + x\alpha x\beta d(y).$ (2)

```
Comparing equations (1) and (2), using (A), we get
      x\alpha y\beta d(x) = y\beta x\alpha d(x)
      x\alpha y\beta d(x) = y\alpha x\beta d(x)
      x\alpha y\beta d(x) - y\alpha x\beta d(x) = 0
      (x\alpha y - y\alpha x)\beta d(x) = 0
   [x,y]_{\alpha}\beta d(x) = 0, for all x,y \in U and \alpha,\beta \in \Gamma.
                                                                                                                                                                                                                                                                                                                                                                                                                                                        (3)
   We replace y by z\beta y in equation (3), and using equation (3), we get
      [x, z\beta y]_{\alpha}\beta d(x) = 0
     z\beta[x,y]_{\alpha}\beta d(x) + [x,z]_{\alpha}\beta y\beta d(x) = 0
   [x,z]_{\alpha}\beta y\beta d(x) = 0, for all x,y,z \in U and \alpha,\beta \in \Gamma.
                                                                                                                                                                                                                                                                                                                                                                                                                                                        (4)
   Replacing y by m\alpha y, m \in M in equation (4), we get
   [x,z]_{\alpha}\beta m\alpha y\beta d(x) = 0, for all x,y,z \in U, \alpha,\beta \in \Gamma and m \in M.
  If we interchange m and y then, we get
   [x,z]_{\alpha}\beta y\alpha m\beta d(x) = 0, for all x,y,z \in U, \alpha,\beta \in \Gamma and m \in M.
 By primness property, either [x, z]_{\alpha} = 0 or d(x) = 0.
 Since U is a non-commutative, then d = 0.
 Theorem 3.2: Let M be a prime \Gamma-ring, U is a ideal of M and d be a nonzero left derivation of M. If
   [d(y),d(x)]_{\alpha}=[y,x]_{\alpha} such that (A) for all x,y\in U and \alpha,\beta\in\Gamma, then [x,d(x)]_{\alpha}=0 and hence M
 is a commutative.
 Proof: Given [d(y), d(x)]_{\alpha} = [y, x]_{\alpha}, for all x, y \in U and \alpha, \beta \in \Gamma.
 Replacing y by x\beta y in above equation, we get
    [d(x\beta y),d(x)]_{\alpha}=[x\beta y,x]_{\alpha}
   x\beta[y,x]_{\alpha} + [x,x]_{\alpha}\beta y = [d(x\beta y),d(x)]_{\alpha}
   x\beta[y,x]_{\alpha} = [x\beta d(y) + y\beta d(x), d(x)]_{\alpha}
   x\beta[y,x]_{\alpha} = (x\beta d(y) + y\beta d(x))\alpha d(x) - d(x)\alpha(x\beta d(y) + y\beta d(x))
   x\beta[y,x]_{\alpha} = x\beta d(y)\alpha d(x) + y\beta d(x)\alpha d(x) - d(x)\alpha x\beta d(y) - d(x)\alpha y\beta d(x)
 Adding and subtracting x\alpha d(x)\beta d(y) then, we get
 x\beta[y,x]_{\alpha} = x\beta d(y)\alpha d(x) + y\beta d(x)\alpha d(x) - d(x)\alpha x\beta d(y) - d(x)\alpha y\beta d(x) - x\alpha d(x)\beta d(y) +
 x\alpha d(x)\beta d(y)x\beta[y,x]_{\alpha} = x\beta d(y)\alpha d(x) + y\alpha d(x)\beta d(x) - d(x)\alpha x\beta d(y) - d(x)\alpha y\beta d(x) - d(x)\alpha y\beta d(x) + d
      x\beta d(x)\alpha d(y) + x\alpha d(x)\beta d(y)x\beta[y,x]_{\alpha} = x\beta d(y)\alpha d(x) - x\beta d(x)\alpha d(y) + y\alpha d(x)\beta d(x) - x\beta d(x)\alpha d(y) + y\alpha d(x)\beta d(x) - x\beta d(x)\alpha d(y) + x\alpha d(x)\beta d(y)x\beta[y,x]_{\alpha} = x\beta d(y)\alpha d(x) - x\beta d(x)\alpha d(y) + y\alpha d(x)\beta d(x) - x\beta d(x)\alpha d(x) + x\alpha d(x)\beta d(x)\alpha d(x) - x\beta d(x)\alpha d(x) + y\alpha d(x)\beta d(x) - x\beta d(x)\alpha d(x) + x\alpha d(x)\beta d(x) + 
 d(x)\alpha y\beta d(x) + x\alpha d(x)\beta d(y) - d(x)\alpha x\beta d(y) \quad x\beta [y,x]_{\alpha} = x\beta [d(y),d(x)]_{\alpha} + [y,d(x)]_{\alpha}\beta d(x) + x\alpha d(x)\beta d(y) - d(x)\alpha x\beta d(y) \quad x\beta [y,x]_{\alpha} = x\beta [d(y),d(x)]_{\alpha} + [y,d(x)]_{\alpha}\beta d(x) + x\alpha d(x)\beta d(y) - d(x)\alpha x\beta d(y) \quad x\beta [y,x]_{\alpha} = x\beta [d(y),d(x)]_{\alpha} + [y,d(x)]_{\alpha}\beta d(x) + x\alpha d(x)\beta d(y) - d(x)\alpha x\beta d(y) \quad x\beta [y,x]_{\alpha} = x\beta [d(y),d(x)]_{\alpha} + [y,d(x)]_{\alpha}\beta d(x) + x\alpha d(x)\beta d(y) - d(x)\alpha x\beta d(y) \quad x\beta [y,x]_{\alpha} = x\beta [d(y),d(x)]_{\alpha} + [y,d(x)]_{\alpha}\beta d(x) + x\alpha d(x)\beta d(y) - d(x)\alpha x\beta d(y) - d(x)\alpha x\beta d(y) + x\alpha d(x)\beta d(y) - d(x)\alpha x\beta d(y) - d(x)\alpha x\beta d(y) - d(x)\alpha x\beta d(y) + x\alpha d(x)\beta d(y) - d(x)\alpha x\beta d(y) -
 [x,d(x)]_{\alpha}\beta d(y)
 Using hypothesis then, we get
   [y, d(x)]_{\alpha}\beta d(x) + [x, d(x)]_{\alpha}\beta d(y) = 0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                       (5)
 Replacing y by y\alpha c, where c \in Z(M) and using equation (5), we get
 [y\alpha c, d(x)]_{\alpha}\beta d(x) + [x, d(x)]_{\alpha}\beta d(y\alpha c) = 0
   y\alpha[c,d(x)]_{\alpha}\beta d(x) + [y,d(x)]_{\alpha}\alpha c\beta d(x) + [x,d(x)]_{\alpha}\beta (y\alpha d(c) + c\alpha d(y)) = 0
   y\alpha[c,d(x)]_{\alpha}\beta d(x) + [y,d(x)]_{\alpha}\alpha c\beta d(x) + [x,d(x)]_{\alpha}\beta y\alpha d(c) + [x,d(x)]_{\alpha}\beta c\alpha d(y) = 0
   y\alpha[c,d(x)]_{\alpha}\beta d(x) - [x,d(x)]_{\alpha}\alpha c\beta d(y) + [x,d(x)]_{\alpha}\beta y\alpha d(c) + [x,d(x)]_{\alpha}\beta c\alpha d(y) = 0
  y\alpha[c,d(x)]_{\alpha}\beta d(x) - [x,d(x)]_{\alpha}\beta c\alpha d(y) + [x,d(x)]_{\alpha}\beta y\alpha d(c) + [x,d(x)]_{\alpha}\beta c\alpha d(y) = 0
   [x, d(x)]_{\alpha}\beta y\alpha d(c) = 0, for all x, y \in U and \alpha, \beta \in \Gamma.
Since 0 \neq d(c) \in Z(M) and U is a ideal of M, then we have [x, d(x)]_{\alpha} = 0, for all x \in U.
   By using the similar procedure as in Theorem (3.1), then we get either [x,z]_{\alpha} = 0 or d(x) = 0. Since d
is a nonzero, then [x, z]_{\alpha} = 0. Hence M is a commutative.
```

Theorem 3.3: Let M be a prime Γ -ring, U is a ideal of M and d be a nonzero left derivation of M. If $[d(y),d(x)]_{\alpha}=0$, for all $x,y\in U$ and $\alpha,\beta\in\Gamma$, then M is a commutative. **Proof:** Given that $[d(y),d(x)]_{\alpha}=0$, for all $x,y\in U$ and $\alpha,\beta\in\Gamma$. Replacing y by $x\beta y$ in above equation then, we get $[d(x\beta y),d(x)]_{\alpha}=0$, for all $x,y\in U$ and $\alpha,\beta\in\Gamma$.

$$[x\beta d(y) + y\beta d(x), d(x)]_{\alpha} = 0$$

$$[x\beta d(y), d(x)]_{\alpha} + [y\beta d(x), d(x)]_{\alpha} = 0$$

$$x\beta [d(y), d(x)]_{\alpha} + [x, d(x)]_{\alpha}\beta d(y) + y\beta [d(x), d(x)]_{\alpha} + [y, d(x)]_{\alpha}\beta d(x) = 0$$

$$[y, d(x)]_{\alpha}\beta d(x) + [x, d(x)]_{\alpha}\beta d(y) = 0.$$
(6)
The proof is now completed by equation (5) of Theorem (3.2). Hence M is a commutative.

Acknowledgment: Financial support is nil.

References:

- 1. BarnesW. E. "On the gamma rings of Nobusawa", Pacific.J.Math 18, (1966): 411-422.
- 2. Bresar. M and Vukman. J. "On some additive mapping in rings with involution", equation math 38, (1989): 178-185.
- 3. Ceven.Y. "Jordan left derivations on completely prime gamma rings", C.U.Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi (2002)Cilt 23 Sayi 2.
- Jaya Subba Reddy. C , Mallikarjuna Rao. S and Vijaya Kumar.V. "Centralizing and commuting left generalized derivations on prime rings", Bulletin of Mathematical Science and Applications, 11, (2015): 1-3.
- 5. Jaya Subba Reddy. C and Hemavathi. K. "Right reverse derivation on prime rings", International Journal of Research in Engineering and Technology, 2, (3) (2014): 141-144.
- 6. Luh. J. "On the theory of simple gamma rings", Michigan Math. J, 16, (1969): 65-75.
- 7. Mayne. J. "Centralizing automorphism of prime rings", Canad. Math. Bull, 19, (1976): 113-115.
- 8. Nobusawa. N. "On a generalization of the ring theory", Osaka J. Math, 1, (1964): 81-89.
- Salah Mehdi Salih et al. "Ideal of prime Γ-rings with right reverse derivations", IOSR Journal of Mathematics, 10, (5) (2014): 83-85.

M. If ce M